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A B S T R A C T

Zoonotic diseases, transmitted between humans and animals, pose a substantial threat to global public health. In
recent years, artificial intelligence (AI) has emerged as a transformative tool in the fight against diseases. This
comprehensive review discusses the innovative applications of AI in the management of zoonotic diseases,
including disease prediction, early diagnosis, drug development, and future prospects. AI-driven predictive
models leverage extensive datasets to predict disease outbreaks and transmission patterns, thereby facilitating
proactive public health responses. Early diagnosis benefits from AI-powered diagnostic tools that expedite
pathogen identification and containment. Furthermore, AI technologies have accelerated drug discovery by
identifying potential drug targets and optimizing candidate drugs. This review addresses these advancements,
while also examining the promising future of AI in zoonotic disease control. We emphasize the pivotal role of AI in
revolutionizing our approach to managing zoonotic diseases and highlight its potential to safeguard the health of
both humans and animals on a global scale.
1. Introduction

Zoonotic diseases are infectious diseases that can be transmitted be-
tween animals and humans and pose a significant threat to global public
health [1]. The emergence and re-emergence of zoonotic diseases, such
as coronavirus disease 2019 (COVID-19), Ebola virus disease (EVD), and
monkeypox, highlight the need for innovative approaches to enhance
disease prevention, early diagnosis, and effective treatment [2,3]. In
recent years, artificial intelligence (AI) has emerged as a powerful tool in
the field of healthcare and has shown great potential in addressing these
challenges [4–6].

The integration of AI techniques with conventional disease control
strategies offers novel prospects for understanding, predicting, and
mitigating the impact of zoonotic diseases [7]. By leveraging advanced
algorithms and machine learning (ML) models, AI can analyze vast
amounts of complex data from diverse sources, ranging from environ-
mental factors to genetic sequences, enabling researchers and public
health authorities to make more informed decisions and implement
proactive measures [8,9].

In this review, we aimed to explore the innovative applications of AI
in zoonotic diseases, with a specific focus on epidemiological
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surveillance, early diagnosis, and drug development (Table 1 and Fig. 1).
We examined the current state of research in each of these domains,
highlighting key advancements and discussing their implications for
public health. Additionally, we identified the challenges and limitations
of AI in zoonotic disease research, as well as opportunities for future
development.

By highlighting the potential of AI in zoonotic disease control, we aim
to contribute to the growing body of knowledge in this field and stimu-
late further research. Ultimately, harnessing the power of AI to combat
zoonotic diseases holds promise for improving global health outcomes,
reducing morbidity and mortality, and preventing future pandemics.

2. Application of AI in epidemiological surveillance

2.1. AI advancements in predicting zoonotic diseases

AI technology has been increasingly utilized for the prediction and
management of zoonotic diseases, including COVID-19, EVD, leptospi-
rosis, and various other diseases [10,45]. AI-based algorithms analyze
vast datasets of human and animal health information, environmental
factors, and pathogen characteristics to predict disease outbreaks and
transmission patterns [46–48].
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Abbreviations

AI Artificial intelligence
ANN Artificial neural networks
ARIMA Autoregressive integrated moving average
CDRA Call data record analysis
DL Deep learning
DNN Deep neural network
EBOV Ebola virus
EDA Exploratory data analysis
EVD Ebola virus disease
FDA Flexible discriminant analysis
GCN Graph convolutional neural networks
GLM Generalized linear models

HMD Human monkeypox detection
IoMT Internet of Medical Things
IoT Internet-of-Things
LSTM Long short-term memory
MAPE Mean absolute percentage error
MARV Marburg virus
MD Molecular dynamics
ML Machine learning
MLP Multilayer perceptron
NiV Nipah virus
RBM Restricted Boltzmann machine
RNN Recurrent neural network
RVF Rift Valley fever
WNB Weighted naive Bayes
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2.1.1. COVID-19
AI algorithms can efficiently process and analyze extensive datasets

derived from diverse sources, including healthcare records, social media,
and mobility patterns [49]. By identifying correlations and patterns
within these data, AI can offer valuable insights into the spread of the
virus, encompassing infection rates, transmission dynamics, and hotspot
identification [50]. Moreover, AI-powered predictive models leverage
historical data and real-time information to forecast pandemic trends
[51]. One study used a dataset composed of publicly available data from
the World Health Organization and Johns Hopkins University [10]. They
employed a recurrent neural network (RNN) to accurately predict the
epidemic curve of COVID-19, specifically focusing on new daily cases
(Fig. 2A). To assess the efficacy of the model, the study compared its
predictions against observed data using metrics such as the root mean
square logarithmic error, root mean square error, and mean absolute
error (MAPE). The results demonstrate the accuracy of the model in
predicting the progression of COVID-19, highlighting the utility of
AI-based models in epidemic prediction.

Another study analyzed the epidemic curve of the COVID-19 pandemic
by constructing a disease prediction model using AI RNNs [52]. The re-
searchers curated the training dataset using publicly available data from
the World Health Organization and Johns Hopkins University. They
employed RNNs with gated recurrent units and long short-term memory
(LSTM) to build two prediction models. The outcomes of these predictions
revealed recurring peaks in the epidemic curvewithminimal discrepancies
between the predicted and validated data and trends. In addition, the au-
thors proposed future infection peaks based on the model, which aligned
with the actual situation, further substantiating the reliability of themodel.

In a separate study, a multilayer perceptron (MLP) neural network
was employed to predict the cumulative incidence of COVID-19 across
the United States [11], wherein a comprehensive database of 57
explanatory variables was compiled. The findings demonstrated that the
MLP neural network accurately projected the cumulative incidence rate,
exhibiting a correlation of 65% with the actual situation. Furthermore,
the authors identified significant associations between the precise pre-
diction of COVID-19 incidence rates and factors, such as ischemic heart
disease, pancreatic cancer, socioeconomic status, and environmental
factors. These findings not only hold significance for predicting
COVID-19 incidence rates but also aid public health decision-makers in
comprehending the impact of potential risk factors associated with
county-level COVID-19 incidence rates.

2.1.2. EVD
AI technology has demonstrated its invaluable role in predicting

potential hosts for EBOV, aiding researchers and public health au-
thorities in understanding and mitigating the risk of EBOV trans-
mission from wildlife to humans. This proactive approach played a
2

crucial role in preventing Ebola outbreaks [53]. Kollars Jr et al. pro-
posed a method that involves identifying the hidden reservoir species
of the EBOV, analyzing the duration and locations of latent reservoirs
during intermittent periods of EBOV outbreaks, and conducting envi-
ronmental epidemiological monitoring [12]. They developed the
environmental modeling system BioTEMS to analyze mammals, ar-
thropods, plants, and protozoa in Sierra Leone, with the aim of
determining the species most likely to serve as hidden storage hosts for
EBOV and their distribution. The results indicated that insects of the
order Diptera, specifically those in the genus Chrysops, were potential
secondary reservoir hosts and mechanical vectors, providing insights
for reducing EBOV transmission.

With the increasing use of big data, researchers have focused on
disease prediction strategies that utilize this vast amount of information
[10]. In one study, a data analysis framework was designed to predict
EVD outbreaks using big data from epidemiological studies [13]. The
framework proposes a hybrid algorithm that combines ML algorithms,
specifically artificial neural networks (ANNs) and genetic algorithms,
implemented on the Apache Spark and Kafka frameworks. This approach
aims to extract new information from large data repositories in the fields
of environment, epidemiology, and immunology. Using Nigeria as a case
study, this study successfully predicted the scale, timing, and duration of
future EVD outbreaks, thus offering an effective means for EVD disease
prediction.

In most Ebola infection cases, patients succumb to the disease before
their bodies generate antibodies [54]. This highlights the need for
improved EVD prediction techniques to achieve greater accuracy. In a
separate study, researchers developed a hybrid neural network by
combining various data-mining techniques and hybrid models to
enhance the intelligence and accuracy of EVD prediction [54]. The
techniques employed include logistic regression, random forest, and
hybrid neural networks. The results demonstrated that employing the
random forest classification strategy could improve the accuracy of
traditional Ebola predictions by up to 100%, thereby providing the po-
tential for analyzing and enhancing the accuracy of EVD prediction
systems.

2.1.3. Leptospirosis
Leptospirosis, a zoonotic disease influenced by weather and envi-

ronmental changes, can be detected early through the analysis of diverse
data sources using AI algorithms [55]. These sources include weather
patterns, environmental factors, and animal populations. Rahmat et al.
conducted a study that analyzed, captured, and predicted the occurrence
of leptospirosis by combining data mining and ML techniques (Fig. 2B)
[14]. Their specific focus was on the relationships between the disease
and temperature, rainfall, and relative humidity. The study began with
exploratory data analysis (EDA) using graphical methods to ascertain the



Table 1
Overview of the applications of AI in the management of zoonotic diseases.

Scope of application Method/Purpose Summary Reference

Epidemiological
surveillance

Disease prediction COVID-19 AI-based RNN to accurately predict the prevalence profile of COVID-19. [10]
MLP neural network to predict cumulative incidence of COVID-19 in US counties. [11]

EVD BioTEMS, an environmental modeling system for determining cryptic reservoir species of Ebola
virus, the duration and location of latent reservoirs between outbreaks, and environmental
epidemiological surveillance.

[12]

Data analysis framework combining ANN and genetic algorithms for predicting EVD outbreaks
from big data.

[13]

Leptospirosis Combination of data mining and ANNmodeling to analyze, capture, and predict the occurrence
of leptospirosis.

[14]

Prediction of leptospirosis with potential for spatial analysis by combining neural network
prediction models and principal component analysis.

[15]

Other diseases Monkeypox prediction technique combining multiple machine learning strategies (linear
regression, decision trees, random forests, elastic nets and ARIMA, etc.).

[16]

Prediction of future outbreaks of anthrax in livestock in Karnataka by machine learning
techniques (GLM, generalized additive models, multiple adaptive regression splines and FDA).

[17]

Epidemiological modeling analyzing the intrinsic links between diseases and ecological and
social factors, data-driven by neural network techniques for RVFs.

[18]

EBP-ANN algorithm to predict and mitigate the adverse effects of viral zoonoses on human
health.

[19]

Contact tracing An intelligent application enables real-time contact tracing by capturing close proximity events
between two smartphones running the application.

[20]

COVICT employs real-time personal symptom data and contact tracing, utilizing IoT and
gradient boosting algorithms.

[21]

This model quantifies the number of infections, contacts, and duration of the epidemic between
the appearance of primary cases and the detection of secondary cases.

[22]

The modle utilized Call Data Record Analysis to extract location information from bedding,
enabling the tracking of patients infected with the dengue virus and controlling the spread of
the epidemic.

[23]

Epidemiological modeling A predictive modeling framework enhanced by AI is capable of forecasting the expected
numbers of COVID-19 confirmed deaths, cases, and hospitalizations.

[24]

The model can evaluate the temporal relationship between meteorological variables,
entomological monitoring indices, and confirmed dengue fever cases.

[25]

A novel machine learning-based framework that utilizes static and dynamic features of places to
estimate the parameters of any epidemiological model, such as contact rate and recovery rate

[26]

Early diagnosis Physiological data analysis Predictive machine learning model combines patient signals, clinicopathologic data, and
traditional early diagnostic results for early diagnosis of leptospirosis.

[27]

The combination of RBM and hybrid ensemble learning method developed a prognostic model
for early diagnosis of Nipah virus.

[28]

Generalized Deep Convolutional Fuzzy Network based on Shuffle Shepherd Optimization
approach for early diagnosis of COVID-19.

[29]

Early diagnosis model of monkeypox virus based on MDiNFIS distinguishes monkeypox virus
from other pox diseases.

[30]

Early detection of monkeypox patients by weighted naïve Bayes, K-Nearest Neighbors and deep
learning algorithms are realized.

[31]

Image recognition Model optimization strategies for early diagnosis of specific zoonotic diseases with AI
algorithms and deep learning architectures.

[32,33]

Smart drones with thermal imaging recognition assist in the early diagnosis of COVID-19. [34]
Combining Python and machine learning techniques (random forests, logistic regression, etc.)
to analyze chest X-ray images for early diagnosis of COVID-19.

[35]

Drug development Machine learning Drug development for SARS-CoV-2 protein drug targets via enhanced sampling MD and
ensemble docking in a supercomputer-driven pipeline.

[36]

New deep neural network-based machine learning algorithm SSnet for COVID-19 drug
screening.

[37]

Gradient boosting tree ensemble-based supervised machine learning model and relies on in
vitro data encoded as chemical fingerprints to identify specific molecular substructures of
different COVID-19 potential drugs.

[38]

Analysis of factors contributing to the development of drug resistance in Salmonella, Listeria
monocytogenes and Campylobacter by machine learningmethods (RrandomForest and XGBoost)
and deep learning methods (multilayer perceptron, generative adversarial networks and
autoencoders).

[39]

Deep learning Implementation of generative models optimized by transfer learning and reinforcement
learning for the development of small molecule drugs for 3CL protease inhibition.

[40]

A deep learning model specifically designed to predict the inhibitory activity of unknown
compounds against MARV.

[41]

Deep-AVPpred, the deep learning classifier, for predicting AVPs in protein sequences. [42]
Conceptual DL framework with the function of identifying, analyzing and predicting the
performance of drugs at different stages.

[43]

Predicting cross-species biomarkers based on viral mRNA or protein sequences with deep
learning models advances influenza drug development.

[44]
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optimal time lag for rainfall analysis. In contrast, non-graphical methods
were employed for temperature analysis. Subsequently, an ANN model
was developed to enhance the overall accuracy, sensitivity, and speci-
ficity of the disease prediction strategies. They collected data from the
3

Seremban district in Malaysia for their predictions and compared the
results with those of traditional forecasting models [14]. The findings
demonstrated that the ANN model achieved the highest accuracy,
sensitivity, and specificity, with values of 84.00%, 86.44%, and 79.33%,



Fig. 1. Overview of the various applications of artificial intelligence (AI) technology in zoonotic diseases.
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respectively. Furthermore, the EDAmethod improved the accuracy of the
prediction model by 13.30–31.26% compared to the baseline model.

In another study focusing on leptospirosis, a neural network predic-
tion model was used for disease forecasting [15]. This study also incor-
porated spatial analysis using principal component analysis to explore
the potential for enhancing the prediction model by incorporating soil
and land-use components. Comparisons between traditional prediction
models and the strategy proposed in this study revealed a remarkable
improvement of 31.26% in accuracy and 35.43% in sensitivity for the
prediction model compared with conventional non-lagged prediction
models. The authors also identified factors, such as soil clay content and
residential land use, as important determinants of leptospirosis. These
findings provide new insights and considerations for disease prediction
in leptospirosis.

2.1.4. Other zoonotic diseases
AI plays a significant role in the prediction of various zoonotic dis-

eases. Monkeypox is a zoonotic disease characterized by fever, rash, and
swollen lymph nodes, with potential health consequences including skin
lesions and scarring [48]. Recently, this has become a prominent topic in
zoonotic disease research. One study proposed a prediction method for
monkeypox using ML techniques [16]. This study employed multiple
4

techniques, such as linear regression, decision trees, random forests,
elastic nets, and Auto Regressive Integrated Moving Average (ARIMA),
achieving a high prediction accuracy of 0.9267 R2 for monkeypox. R2,
also known as the coefficient of determination, represents the statistical
measure of how well the regression model fits the observed data. It in-
dicates the proportion of the variance in the dependent variable that can
be accounted for by the independent variable in the model. An R2 value
ranges from 0 to 1, with values closer to 1 indicating a better fit between
the model and data. In this study, the R2 value of 0.9267 suggests that
approximately 92.67% of the variation in monkeypox can be explained
by the multiple regression models used. The high prediction accuracy
indicates that the models are reliable tools that could help researchers
identify effective interventions for reducing the impact of this disease.
Therefore, this prediction model serves as a valuable tool for ongoing
studies of monkeypox [16].

Anthrax is an acute infectious disease affecting humans and animals,
caused by the bacterium Bacillus anthracis [56]. Early detection of
anthrax outbreaks is crucial for minimizing the number of cases, deaths,
and the risk of disease spread. A recent study aimed to develop a disease
prediction model using ML techniques to forecast anthrax outbreaks in
livestock in Karnataka [17]. The goal was to achieve early detection of
anthrax cases. The authors employed an ML model developed with



Fig. 2. AI advancements in predicting zoonotic diseases. (A) Intelligent neural network for predicting the COVID-19 pandemic [10]. (B) Clustering analysis of
temperature data using machine learning (ML) techniques, with five colors representing five distinct clusters for the analysis and prediction of the occurrence of
Hookworm Disease [14]. (C) An ML model employing techniques such as linear regression, decision trees, random forests, elastic nets, and for the prediction of
monkeypox [16].
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version 3.1.3 of the R statistical software. They combined various data
mining regression and classification models, including generalized linear
models (GLMs), generalized additive models, multiple adaptive regres-
sion splines, and flexible discriminant analysis (FDA). Anthrax occur-
rence data from the Animal Husbandry Department in Bangalore,
Karnataka, India, were utilized. The study successfully identified sus-
ceptible areas where the next anthrax outbreak is likely to occur. Thus,
this disease prediction model could serve as an early warning system for
anthrax outbreaks in Karnataka livestock.

Rift Valley fever (RVF) is a zoonotic viral disease that can cause mass
die-offs in livestock and has a high fatality rate in affected human pop-
ulations [57]. Despite its significant impact, little is known about the
occurrence of RVF and factors influencing its transmission. One study
aimed to conduct data-driven epidemiological modeling of RVF using
neural network techniques [18]. By integrating landscape archaeology,
historical evidence, climate data, and human behavioral evidence
collected through ethnoarchaeological research, the study proposes a
human-animal paleopathology application framework. This framework
analyses the inherent connections between diseases and ecological and
social factors, aiding in addressing the threat of zoonotic diseases
resulting from climate warming.

Viral zoonotic diseases pose serious threats to human and animal
health [58]. Choubey et al. used an enhanced backpropagation ANN
(EBP-ANN) algorithm to predict and mitigate the adverse impacts of viral
zoonotic diseases on human health [19]. Viral datasets were collected
and preprocessed using Z-score normalization. Subsequently, they
extracted viral data features using a dynamic angle projection pattern
and employed GAs to select more accurate feature data. The evaluation of
the performance of the system revealed superior prediction accuracy
compared to existing techniques, establishing its efficacy in improving
viral disease prediction efficiency.

In summary, AI technology has been applied in various ways to pre-
dict and mitigate zoonotic diseases including COVID-19, EBOV, and
leptospirosis. The application of AI in zoonotic disease prediction not
only enhances our ability to safeguard both human and animal health but
also contributes to a more proactive and effective approach to managing
potential pandemics.

2.2. AI for contact tracing

Contact tracing plays a vital role in managing infectious disease
outbreaks and is considered a crucial public health measure [59]. The
purpose of contact tracing is to identify andmonitor individuals whomay
have been in contact with an infected person, thereby preventing further
transmission [60]. Manual contact tracing is labor-intensive; however,
5

the use of AI and big data analytics can enhance and expedite this
process.

In the case of the COVID-19 pandemic, a primary challenge arises
from the potential for infected individuals to remain asymptomatic or
pre-symptomatic while retaining the capacity to transmit the virus [61].
Consequently, it is essential to identify and track contacts of known cases
to minimize the spread of the virus. Throughout the pandemic, various
digital contact tracing solutions have employed location data from mo-
bile devices and ML algorithms to identify potential contacts [62–64].
Ferretti et al. proposed an application based on the existing technology
that facilitates real-time contact tracing [20]. This application establishes
a log of close contacts and captures close proximity events between two
smartphones running the application. In the event that an individual is
diagnosed with COVID-19, the application promptly sends automated
and anonymous risk notifications to those who have close contacts,
accompanied by a request for self-isolation. Consequently, if a suffi-
ciently high proportion of the population utilizes contact tracing mobile
applications, it would be adequate to halt the spread of the epidemic
[20]. This AI-based contact tracing system enabled the rapid issuance of
contact alerts and recommendations for isolation, effectively mitigating
the spread of the pandemic. Another notable system proposed by Wahid
et al. is an Internet-of-Things (IoT)-based COVID-19 detection and
monitoring system. COVICT employs real-time personal symptom data
and contact tracing, utilizing device-to-device (D2D) communication and
gradient-boosting algorithms to determine proximity and contact dura-
tion [21]. This system achieved impressive accuracy, with a classification
error of 2.9%, sensitivity of 96.5%, and specificity of 97.7% [21]. Keeling
et al. developed a predictive model to assess the effectiveness of
contact-tracing strategies in the UK. By combining detailed survey data
on social contacts from over 5800 respondents with a predictive model of
contact tracing and control, they evaluated the potential impact of con-
tact tracing and identified missed secondary cases before severe symp-
toms emerged. The study demonstrated the effectiveness of the UK's
contact tracing strategy in identifying a significant proportion of in-
fections [21].

To control the spread of monkeypox in nonendemic countries, Ko
et al. developed a stochastic model based on Gillespie's random kinetic
algorithm [22]. This model quantifies the number of infections, contacts,
and duration of the epidemic between the appearance of primary cases
and detection of secondary cases. The model considers delays in tracking
contacts and establishes different scenarios to address various situations.
The findings of this model highlight the significant impact of
self-reporting behavior exhibited by primary cases on both the scale and
duration of the outbreak. Compared to non-self-reporting primary cases,
those who self-reported had an 86 % reduction in the number of
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infections and contacts [22]. This research not only provides a scenario
simulation for contact tracing but also emphasizes the importance of the
immediate detection of primary cases.

Digital contact-tracing solutions have been implemented in various
locations, typically relying on mobile applications that utilize Bluetooth
technology to identify close contacts of an infected individual [65,66].
When an individual is diagnosed with COVID-19, they can input this
information into the application, which records interactions with other
application users who have had contact with the infected person using
Bluetooth technology [67]. These users then receive notifications that
alert them to potential infection risks and provide guidance on adopting
the required precautions, such as self-isolation or testing for COVID-19.

The effectiveness of these AI-based contact-tracing solutions depends
on their widespread adoption and usage. If a substantial proportion of the
population utilizes these applications to accurately report their infection
status, the spread of the virus can be effectively curtailed. However, these
approaches have challenges and limitations. Not everyone possesses a
smartphone or is willing to use such applications, thereby limiting their
coverage [68]. Furthermore, concerns regarding privacy and data secu-
rity emerge as a consequence of the collection and processing of personal
user data [69]. In summary, digital contact-tracing solutions can serve as
valuable tools for mitigating the spread of zoonotic diseases, including
COVID-19. However, their effectiveness relies on widespread adoption
and usage while carefully considering privacy and data security aspects.

2.3. AI advancements in epidemiological modeling

In addition to contact tracing, AI plays a crucial role in epidemio-
logical modeling, enabling the prediction of disease spread in pop-
ulations over the long term. By utilizing advanced ML algorithms, these
models integrate disease parameters, human behavior, and environ-
mental factors to generate highly accurate predictions [47,70].
Throughout the COVID-19 pandemic, researchers have employed various
modeling techniques, including computational agent-based, longitudinal
prediction, and meta-population models combined with mobility data
[71].

Arik et al. proposed a predictive modeling framework enhanced by AI
capable of forecasting the expected numbers of COVID-19 confirmed
deaths, cases, and hospitalizations on a nationwide scale for both the
United States and Japan over the upcoming 4-week period [24]. During
the prospective deployment, MAPE for predicting COVID-19-related
deaths remained below 8% (United States) and 29% (Japan), whereas
the cumulative MAPE remained below 2% (United States) and 10%
(Japan). This framework enabled counterfactual simulations, demon-
strating the crucial role of sustained non-pharmaceutical interventions
and vaccination in achieving faster recovery from the pandemic. Delayed
intervention measures can have harmful effects, and different vaccina-
tion strategies can be studied using this framework [24].

Currently, there is a dearth of successfully developed epidemiological
models for monitoring dengue fever in nonendemic areas [25]. A study
by Chang et al. aimed to identify an optimal model for dengue fever
surveillance in non-endemic regions by evaluating the temporal re-
lationships between meteorological variables, entomological monitoring
indices, and confirmed dengue fever cases. The analysis was based on
epidemiological, entomological, and meteorological data collected be-
tween 2005 and 2012 from Kaohsiung City, Taiwan, China. The model
incorporates mosquito larval indices, namely the Breteau index,
container index, and house index, along with an adult index, to analyze
dengue fever data. Poisson regression was employed to select the best
subset of variables and time delays for predicting the number of dengue
fever cases. The final result of the multivariate analysis was determined
based on the minimum Akaike information criterion value [25]. Subse-
quently, a multivariate logistic regression model was applied to the
selected indices and variables to assess the accuracy of predicting dengue
fever. The accuracy rates of the model for predicting dengue fever cases
using the one adult, Breteau, Container, and House indices were 83.8%,
6

87.8%, 88.3%, and 88.4%, respectively. The predictive thresholds for the
individual models (one adult, Breteau, container, and house indices)
were 0.97, 1.16, 1.79, and 0.997, respectively.

Furthermore, Gatta et al. proposed a novel machine learning-based
framework that utilizes static and dynamic features of places to esti-
mate the parameters of any epidemiological model, such as contact rate
and recovery rate [26]. By employing graph convolutional neural net-
works (GCNs) and LSTMs, they investigated the spatiotemporal charac-
teristics of mobile data to infer the parameters of the
susceptible–infected–recovered and the susceptible-infected-recover-
ed-dead models.

These AI-driven epidemiological models have played a significant
role in predicting infection curves, assessing the impact of public health
interventions, and providing information for policy decision-making. As
efforts toward pandemic prevention and control continue, AI-based
modeling will serve as an essential tool for decision-makers to mitigate
the impact of future outbreaks [72].

3. Enhancing early diagnosis of zoonotic diseases through AI
advancements

Advancements in AI have contributed greatly to the early diagnosis of
zoonotic diseases, benefiting both human and animal health. Analysis of
physiological data using AI algorithms enables the detection of subtle
changes in vital signs or biomarkers, aiding in the identification of po-
tential infections or disease outbreaks. Additionally, the application of AI
to image recognition allows for the accurate and rapid identification of
zoonotic disease indicators in medical images, facilitating early inter-
vention and containment measures. These advances have played crucial
roles in improving disease surveillance, prevention, and control strate-
gies, ultimately mitigating the risks associated with zoonotic diseases.

3.1. Analysis of physiological data

The use of AI in the analysis of physiological data holds substantial
significance for the timely diagnosis of zoonotic diseases, which can
affect both human and animal populations [31]. By applying AI algo-
rithms to analyze complex physiological data, researchers can identify
patterns and markers that may indicate the presence of a zoonotic dis-
ease, facilitating timely intervention and prevention measures [6].

ML, a subset of AI, plays a critical role in the analysis of physiological
data [73]. Traditional methods for early diagnosis of leptospirosis in
animals have limitations in terms of sensitivity and diagnostic time [27].
However, one study was conducted using a predictive ML model that
combines patient signals, clinicopathological data, and traditional early
diagnosis results [28]. The researchers collected data from both diseased
and healthy dogs to train the model, resulting in 100% sensitivity in early
diagnostic strategies for leptospirosis (Fig. 3A). Kannan et al. developed a
prognostic model for the early diagnosis of Nipah virus (NiV) using ML
techniques [28]. They combined a range of clinical factors such as
symptoms, disease incubation period data, and routine blood test results
confirmed by laboratory technicians. The study proposes an approach
called the restricted Boltzmann machine (RBM) to handle a large number
of clinical features. Furthermore, a hybrid ensemble learning method was
employed to determine NiV infection in patients after feature selection
using RBM. The model achieved an accuracy of 88.3% after validation.

Additionally, AI-based analysis of physiological data enables the real-
time monitoring and surveillance of zoonotic diseases [74]. By continu-
ously analyzing data from wearable devices, environmental sensors, and
animal health records, AI algorithms can promptly identify disease out-
breaks or emerging zoonotic threats [75]. Alam et al. introduced a
method called the shuffle shepherd optimization-based generalized deep
convolutional fuzzy network (SSO-GDCFN) for the early diagnosis of
COVID-19 (Fig. 3B) [29]. They collected data from various sensors,
including potentiometers, blood pressure sensors, graphene
field-effect-transistor (G-FET)-based sensors, and electrochemical
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sensors. After data preprocessing, we used the principal component of
African buffalo optimization method for feature extraction. Subse-
quently, the features were analyzed and evaluated using SSO-GDCFN to
determine whether they could be diagnosed as COVID-19. The results
demonstrate an accuracy of 99.99% using this method.

Moreover, AI facilitates the development of early diagnosis models
for zoonotic diseases [76]. Tom et al. proposed a neuro-fuzzy earl diag-
nosis model for the monkeypox virus, allowing differentiation from other
pox diseases [30]. The diagnostic model comprises a knowledge base,
neuro-fuzzy inference engine, and decision support engine. By inputting
a patient's physiological data and conducting a preliminary diagnosis
based on the database, the model ensures the accuracy and precision of
the diagnostic results using the intelligent neuro-fuzzy inference system
(MDiNFIS). Currently, the model is available as software for use by pa-
tients and medical institutions. Saleh et al. presented an AI technology
model called the human monkeypox detection (HMD) strategy for the
early diagnosis of monkeypox in patients [31]. The model comprised two
main stages: selection and detection. The selection stage aims to identify
the most relevant features corresponding to the disease, and the detec-
tion stage provides rapid and accurate detection based on the effective
data obtained from the selection stage. The model comprises three
diagnostic algorithms: weighted naïve Bayes, weighted K-nearest
neighbors, and deep learning (DL) algorithms [31]. These algorithms are
combined using a novel weighted voting method to obtain optimal
diagnostic results. Experimental results show that, compared to other
modern strategies, the HMD strategy achieves the highest accuracy,
precision, and recall rates (98.48%, 91.1%, and 88.91%, respectively).

The AI-driven analysis of physiological data plays a crucial role in the
early diagnosis of zoonotic diseases. By integrating multimodal data,
utilizing ML algorithms, and enabling real-time monitoring, AI can
empower researchers and healthcare professionals to detect and respond
to zoonotic infections at their earliest stages. This proactive approach is
vital to prevent outbreaks, safeguard human and animal populations, and
improve overall public health.
3.2. Application of AI in image recognition

Indeed, the application of AI in image recognition has a significant
impact on the early diagnosis of zoonotic diseases in humans and animals
[77,78]. By analyzing and interpreting visual data, AI algorithms can
accurately identify patterns, anomalies, and specific markers associated
Fig. 3. Enhancing early diagnosis of zoonotic diseases through AI advancements. (A
clinical features to facilitate early diagnosis of NiV [27]. (B) Data collection from
subsequent analysis and assessment of features by Shuffle Shepherd Optimization
diagnosis of COVID-19 [29].
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with such diseases [79,80]. This technology enables healthcare pro-
fessionals and veterinarians to detect infections, monitor their spread,
and implement prompt interventions to prevent outbreaks [81].

AI-based image recognition systems can quickly and efficiently pro-
cess large volumes of medical and veterinary images [79]. They can
detect subtle changes in tissues, organs, or cells, which may indicate the
presence of a zoonotic disease [82]. Early detection allows for timely
treatment and containment strategies, reducing the risk of transmission
and minimizing its impact on public health [83]. Research studies have
explored the use of AI algorithms and DL architectures, such as ResNet50,
EfficientNetB3, EfficientNetB7, and EfficientNet-B0, for the early diag-
nosis of specific zoonotic diseases, such as monkeypox [32,33]. These
studies have shown promising results, achieving high accuracy rates in
detecting skin lesions associated with monkeypox. By collecting image
data from around the world and using transfer learning techniques, re-
searchers aim to enhance the accuracy of the early diagnosis of various
zoonotic diseases.

Furthermore, AI-powered image recognition systems can overcome
the limitations posed by human error or subjectivity in the interpretation
of complex visual data [84]. For example, in the early diagnosis of
COVID-19, unmanned aerial vehicles equipped with thermal imaging
cameras can intelligently identify masks and detect abnormal body
temperatures in crowds [34]. This technology enables the detection of
potential COVID-19 patients without human intervention, thereby
facilitating early diagnosis and data collection. Similar AI-assisted sys-
tems have been developed for the early detection of chicken diseases.
Using smart mobile devices to capture fecal images, ensemble networks
composed of fine-tuned convolutional neural networks have achieved
impressive accuracy rates [85,86]. These advancements in AI technology
offer hope for the early detection of various zoonotic diseases affecting
poultry and other animals. Another study proposed the utilization of ML
techniques, such as random forest, logistic regression, naïve Bayes, and
support vector machines implemented in Python to classify a series of
chest X-ray images, including in cases of viral pneumonia as well as
COVID-19 and of uninfected individuals [35]. The study gathered over
1400 images from the Kaggle platform, and the results demonstrated that
the model achieved accuracy, sensitivity, and specificity exceeding 90%
for distinguishing between common influenza and COVID-19 [35,87].
This finding is significant for the diagnosis of COVID-19 and makes a
valuable contribution to the fight against the disease [35]. Additionally,
innovative devices combining reverse transcription loop-mediated
) Employing Restricted Boltzmann Machine (RBM) methodology for processing
sensors, feature extraction using the African buffalo optimization method, and
-based Generalized Deep Convolutional Fuzzy Network (SSO-GDCFN) for the
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isothermal amplification with AI algorithms have been proposed for the
sensitive and specific identification of zoonotic diseases, such as
COVID-19. These handheld smart devices demonstrate high analytical
sensitivity and specificity, surpassing the current gold-standard diag-
nostic methods.

The integration of AI-based image recognition for the early diagnosis
of zoonotic diseases is crucial. It provides healthcare professionals and
veterinarians with a powerful tool for swiftly identifying and responding
to potential outbreaks, thereby safeguarding human and animal health.

4. Discovery and development of drugs for zoonotic diseases

AI technologies, including ML and DL, have revolutionized the dis-
covery and development of drugs for zoonotic diseases. Advanced AI
techniques leverage large datasets and intricate data analyses to expedite
drug discovery.
4.1. Machine learning

ML, a key component of AI, plays a significant role in the discovery
and development of drugs for zoonotic diseases [88]. By employing al-
gorithms that can learn from data, make predictions, and take decisions,
ML enables researchers to analyze large datasets, identify patterns, and
generate insights that facilitate the development of new drugs [43,89].

A crucial application of ML in drug research is the identification of
potential drug targets. ML algorithms can analyze biological and genetic
data to identify molecules, proteins, or genes that participate in disease
pathways [90]. This information helps researchers focus their efforts on
developing drugs that interact with these targets, leading to more
effective therapies [91]. Acharya et al. proposed a strategy for drug
development by rapidly exploring the conformational space of the
SARS-CoV-2 protein drug targets (Fig. 4A) [36]. This approach utilizes
enhanced sampling molecular dynamics (MD) and ensemble docking in a
supercomputer-driven pipeline for in silico drug discovery. It involves
docking compound libraries against representative protein-binding site
conformations, considering the dynamic nature of the binding sites, to
identify the most effective targeted drugs against SARS-CoV-2. Re-
searchers also aim to further optimize this strategy using methods such as
quantum mechanics and ML.

ML also plays a vital role in virtual screening. By training models of
known drug-target interactions, ML algorithms can predict the likelihood
of a compound binding to a target of interest [92]. This approach enables
researchers to prioritize and select the most promising drug candidates
Fig. 4. Discovery and development of drugs for zoonotic diseases. (A) Development
targets to identify the most effective targeted drugs against SARS-CoV-2 [36]. (B)
employed for the screening of potential drugs. The diagram depicts the proposed me
enzyme 2):S1 binding. Cases I and II represent the unexpected stability of the ACE2
mation due to allosteric interference at the ACE2 binding interface by ACE2:S1 com
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for further investigation, thereby saving time and resources [93]. In the
face of unexpected crises such as COVID-19, utilizing AI methods to
explore existing drugs as potential treatments for the disease has great
potential. Karki et al. introduced a new ML algorithm, SSnet, based on
deep neural networks (DNNs) for drug screening in the context of
COVID-19 (Fig. 4B) [37]. They employed SSnet to screen a large com-
pound library containing 750,000 compounds to rapidly identify po-
tential drugs for urgent zoonotic disease cases similar to the approach
employed for COVID-19 cases. They also made this strategy accessible
through an open-access website, allowing researchers from different
fields to use it. SSnet is a tool used to screen large molecular libraries to
identify drugs with potential therapeutic effects. Another ML model for
drug discovery and screening against COVID-19 focused on themolecular
substructures of drugs [38]. This method utilizes a supervised ML model
based on a collection of gradient-boosting trees and relies on in vitro data
encoded as chemical fingerprints to identify specific molecular sub-
structures of different potential drugs. The authors employed this model
to screen for optimal repurposing drug candidates among drugs approved
by the Food and Drug Administration.

Furthermore, ML contributes to the prediction of antimicrobial drug
resistance, which is a crucial consideration for the development of drugs
for zoonotic diseases [94]. An intelligent strategy has been developed to
analyze factors contributing to multidrug resistance in poultry pathogens
associated with zoonotic infections [39]. In the study, 1635 fecal and soil
samples were collected from 42 poultry flocks and 11 farms in the
southeastern United States. They employed two traditional ML methods
(random forest and XGBoost) and three DL methods (MLP, generative
adversarial networks, and autoencoders) to analyze significant factors
influencing the development of drug resistance in Salmonella, Listeria,
and Campylobacter. Based on the findings of this study, relevant recom-
mendations are proposed to reduce the emergence of antimicrobial
resistance.

ML plays a crucial role in the research and development of drugs for
the treatment of zoonotic diseases. Its ability to analyze complex datasets
and predict drug-target interactions accelerates drug discovery. By har-
nessing the power of ML, researchers can develop targeted therapies and
advance the field of medicine.
4.2. Deep learning

DL algorithms in AI play crucial roles in drug discovery and devel-
opment [95]. These algorithms can analyze vast amounts of biological
and chemical data, enabling the identification of potential drug targets,
of drugs through rapid exploration of the conformational space of protein drug
A machine learning (ML) algorithm, SSnet, based on deep neural networks,

chanism of action of putative drugs inhibiting the ACE2 (angiotensin-converting
:S1 complex. Cases III and IV depict the stabilization of the open ACE2 confor-
plex inhibitors [37].
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prediction of drug properties, and acceleration of the discovery of new
therapeutic compounds [96].

A significant application of DL in drug development is virtual
screening. By training on large databases of molecules and their prop-
erties, DL models can accurately predict the likelihood of a specific
molecule binding to a specific target [95]. This ability allows researchers
to narrow down the search for potential drug candidates, saving valuable
time and resources [97]. For example, one study developed
small-molecule drugs that potentially inhibit the chymotrypsin-like
(3CL) protease, a target protein of SARS-CoV-2, using a DNN genera-
tion and prediction model [40]. The generation model was optimized
using transfer and reinforcement learning, focusing on the chemical
space corresponding to the protease inhibitors. Multiple physicochemical
property filters and virtual screening scores were used in the final
screening process. Kumari et al. developed a DL model using resampling
techniques specifically for the Marburg virus (MARV) [41]. This model
was used in a virtual screening process to predict the inhibitory activities
of unknown compounds against MARV. A resampling technique was used
to address the issue of imbalanced data. The study achieved a high ac-
curacy rate of 95% in screening for active lead molecules against MARV,
utilizing various databases such as ChemDiv, ChEMBL antiviral library,
plant chemical database, NCI divsetIV natural products, and the natural
compound ZINC database.

DL algorithms also aid in de novo drug design, allowing the compu-
tational generation of new compounds [98]. By leveraging generative
models, these algorithms can explore the chemical space and propose
novel molecules with desired properties, enabling the discovery of
unique drug candidates that traditional methods may have overlooked
[99]. Sharma et al. proposed a DL classifier called Deep-AVPpred to
predict antiviral peptides (AVPs) in protein sequences [42]. The classifier
utilized transfer learning in DL algorithms and achieved an accuracy of
94%. In addition, deep-AVPpred has been used to discover novel AVPs in
the human interferon-alpha family of proteins.

Furthermore, DL enhances the optimization of lead compounds by
predicting their pharmacokinetic properties, such as absorption, distri-
bution, metabolism, and excretion [100]. DL models assist in the selec-
tion of promising drug candidates for further development, streamlining
the drug discovery pipeline, and increasing its efficiency [101]. Recently,
a research study proposed a conceptual DL framework consisting of eight
components, each responsible for identifying, analyzing, and predicting
the performance of drugs at different stages [43]. This model can provide
predictions and relevant recommendations for various stages of drug
development with the aim of alleviating the time-consuming limitations
of traditional drug development and experimental methods.

DL also facilitates the analysis of omics data, including genomics,
proteomics, and metabolomics [102]. By integrating and interpreting
these complex datasets, DL algorithms can identify biomarkers, under-
stand disease mechanisms, and personalize treatment approaches [103].
The influenza A virus is the primary causative agent of high morbidity
and mortality in zoonotic diseases. One study employed DL models to
predict viral hosts based on viral mRNA or protein sequences to advance
drug development for influenza by predicting cross-species biomarkers
[44]. The model utilizes training data obtained from nucleotide se-
quences collected from the NCBI Influenza Virus and Influenza Research
Databases. After classifying the data, various neural network interpre-
tation methods were used to analyze the trained model and identify
interesting candidate biomarkers for zoonotic disease transitions, which
are of significant importance in drug development.

DL in AI has significant implications for drug research and develop-
ment of zoonotic diseases. Its ability to analyze complex data, predict
drug-target interactions, and accelerate the discovery of novel com-
pounds has revolutionized the field. By harnessing the power of DL, re-
searchers can expedite the identification of new treatments and
ultimately improve healthcare outcomes for patients worldwide.
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5. Discussion and perspective

In this review, we discuss innovative applications of artificial AI in
zoonotic diseases, focusing on disease prediction, early diagnosis, and
drug development. The integration of AI techniques with traditional
disease control strategies has shown great potential for advancing our
understanding of zoonotic diseases and improving public health
outcomes.

One of the major contributions of AI to the study of zoonotic diseases
is its ability to predict outbreaks and identify high-risk areas. By
analyzing vast amounts of data from various sources, such as environ-
mental factors, animal migration patterns, and human behavior, AI al-
gorithms can generate accurate and timely predictions of disease
emergence [104]. This will enable public health authorities to implement
preventive measures and allocate resources effectively, ultimately
reducing the impact of zoonotic diseases on human populations.

Furthermore, AI has revolutionized early disease diagnosis by
improving the speed and accuracy of disease detection. AI can be used to
analyze intricate patterns and biomarkers found in medical imaging,
genetic data, and clinical records to identify potential zoonotic infections
in their early stages [105]. Early diagnosis not only enhances patient
outcomes but also aids in containing the spread of diseases by enabling
prompt isolation and treatment [106]. Delays in the transmission of
zoonotic diseases can adversely affect disease prediction in humans.
These delays can be influenced by various epidemiological factors, with
the most significant factor being the incubation period of the infectious
agent in the vector and the incubation period of the infection in the host
[31]. AI technology can help address this challenge. For instance,
research has been conducted on the use of the Levenberg-Marquardt
method to train a backpropagation neural network (LM-BPNN) for
intelligent numerical computation [107]. This model was developed
specifically to analyze the spread of COVID-19, considering
cross-immunity and time delay, and establish a classification model for
susceptible, infected, recovered, and cross-immune individuals. By
training this model with data, it was possible to reliably predict the in-
cubation period of COVID-19, thereby enhancing the accuracy of disease
prediction for this particular virus.

AI provides novel approaches to identify potential therapeutic targets
and accelerate the discovery of new drugs. Leveraging techniques, such
as virtual screening, AI algorithms can analyze a vast database of
chemical compounds and predict their interactions with disease-causing
agents [90]. This approach expedites the drug discovery process and
holds promise for the development of effective treatments for zoonotic
diseases.

Although AI has enabled significant advancements, its applicability in
the prediction, diagnosis, and treatment of zoonotic diseases is con-
strained by certain limitations. One of the primary constraints is the
availability and quality of data. AI models rely on large training datasets;
however, standardized and comprehensive data on zoonotic diseases are
lacking [108]. Factors such as small sample size, underreporting, and
biases in the data limit the generalizability of AI models. Additionally,
privacy restrictions can pose obstacles to accessing relevant data. As AI in
healthcare increasingly utilizes nontraditional data sources, new chal-
lenges arise in terms of data curation and ethical considerations [109].
Another limitation is the difficulty AI algorithms face in capturing the
complexity of biological systems and disease pathways [110]. These al-
gorithms may fall short in comprehensively elucidating key in-
terdependencies, thereby limiting their capacity to mirror human clinical
reasoning. Neglecting to incorporate expert domain knowledge in the
design of AI models is another common pitfall, particularly in tasks such
as causal diagnosis. Furthermore, several AI tools for zoonotic diseases
primarily undergo retrospective testing and lack real-world validation
[111]. Their effectiveness in various clinical conditions remains uncon-
firmed until extensive prospective evaluations are conducted. Even
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rigorously evaluatedmodels can become outdated as pathogens evolve or
as new diagnostic methods emerge. Furthermore, the risks associated
with over-reliance on AI recommendations can erode human oversight
and accountability [112]. “Black box” algorithms, which lack trans-
parency, exacerbate this problem [113]. The biases present in the
training data can propagate silently, leading to a biased output. Addi-
tionally, if healthcare users lack a sufficient understanding of AI, they
may misuse or misinterpret the outputs of these models. While AI shows
promise, it should be seen as a tool to augment clinical expertise and
standardize protocols for managing zoonotic diseases rather than as a
replacement. By carefully designing and judiciously applying them, we
can leverage the strengths of AI while safeguarding it against its weak-
nesses. Addressing these multifaceted limitations is crucial to drive future
studies in this field.

Looking ahead, several key areas warrant further research and
development. First, the integration of AI with genomics and proteomics
has the potential to provide a deeper understanding of the molecular
mechanisms underlying zoonotic diseases. This integration could lead to
the identification of more accurate diagnostic markers and targeted
therapies. The amalgamation of diverse omics datasets utilizing AI
techniques presents significant opportunities for advancing precision
medicine and transforming disease surveillance capabilities. For
instance, AI techniques that jointly analyze genomic, transcriptomic,
proteomic, and metabolomic data from the same biological samples can
unveil intricate biomolecular relationships and regulatory mechanisms
underlying disease pathogenesis [114]. Researchers have already
devised multi-omics fusion algorithms to identify novel diagnostic and
prognostic biomarkers as well as molecular subtypes of cancer, resulting
in more precise therapies [115]. At the public health level, a combination
of surveillance data from genomics, medical records, and environmental
monitoring can enhance early warning systems for infectious disease
outbreaks [116]. Other studies integrated livestock microbiome data
with soil, precipitation, and land-use data to forecast livestock disease
risks using ML [117]. Centralized data platforms are emerging to facili-
tate the integration of dispersed multiomics datasets for large-scale AI
model development. For instance, Bessani et al. developed a
Hadoop-based platform for secure storage, sharing, and parallel pro-
cessing of genomic data in the BiobankCloud project. Hadoop is a
distributed system architecture that is known for its high fault tolerance.
The entire system is open source and supports secure data sharing be-
tween different distributed Hadoop clusters. This platform offers pre-
defined workflows for common tasks in biomedical data analysis, such as
variant identification and differential transcriptome analysis using
RNA-Seq and miRNA-Seq analysis [118]. In April 2020, all 36 university
hospitals in Germany established university medical networks using a
large-scale data-sharing approach. The CODEX project aims to develop a
nationwide COVID-19 data exchange platform to coordinate COVID-19
action plans, diagnostic and treatment strategies, and collaborative
research activities [119]. Such extensive biomedical data can act as a
catalyst for advanced analytics. Overall, the combination of compre-
hensive omics data with clinical and environmental data presents
immense potential for unraveling disease mechanisms, predicting out-
breaks, developing more precise diagnostics and treatments, and ulti-
mately, enhancing healthcare through AI. However, these advancements
require extensive data sharing and collaboration among researchers,
public health entities, and technological partners.

Additionally, the ethical implications surrounding the use of AI in
zoonotic disease control, such as privacy concerns and bias in data
analysis, need to be addressed to ensure the responsible and equitable
deployment of these technologies [120,121]. As highlighted during the
Verena One Health Risk Tech Forum held at Georgetown University's
Center for Global Health Science and Security in 2021, AI has a signifi-
cant potential to revolutionize healthcare (Carlson et al., 2021).
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However, this raises important concerns regarding the transparency,
interpretability, and potential bias of AI systems. As AI algorithms make
increasingly complex decisions in areas such as diagnosis and treatment
recommendations, it is crucial to ensure that these systems are trans-
parent and interpretable for healthcare professionals [122]. The use of
opaque “black box” models can lead to mistrust of AI and hinder its
adoption in clinical settings. To address this, steps must be taken to
enhance transparency through techniques such as visualizing model
logic, embedding explanatory ability directly into model architectures,
and generating explanations for individual predictions [123]. Further-
more, AI systems may unintentionally perpetuate or introduce biases
based on factors such as gender, ethnicity, socioeconomic status, and
geographic location [109,124]. Bias can arise from imperfect training
data that fail to adequately represent diverse populations. Mitigating
algorithmic bias requires diversifying data sources, auditing algorithms
for discrimination, and proactively monitoring model performance
across demographic groups [125]. Researchers have proposed techniques
such as adversarial debiasing, which employs an adversarial network to
remove sensitive attributes from datasets [126]. Healthcare organiza-
tions adopting AI must prioritize transparency, interpretability, and
fairness [113]. Extensive testing and validation focused on detecting
biases is essential before clinical implementation. Rigorous governance
frameworks and ethics boards can provide an overview of the societal
impact of AI on healthcare [112]. By deliberately building and evaluating
ethical AI systems, the healthcare community can harness the benefits of
this technology while safeguarding patients. Patient-centered design
principles must remain at the core of healthcare AI development and
application.

Moreover, effective collaboration and data sharing among re-
searchers, public health agencies, and technology companies are
pivotal to fully harness the potential of AI in zoonotic disease research.
Scientists worldwide are striving to establish a database based on the
“One Health” concept to prevent and manage zoonotic disease out-
breaks [127]. Open-access databases, standardized protocols, and
interdisciplinary collaborations will facilitate the development of
robust AI models and accelerate the translation of research findings
into clinical practice. Although AI offers significant potential, there are
notable challenges in translating the proof-of-concept into real-world
clinical and public health workflows [128]. A key obstacle is the
lack of integration with existing health IT systems, which hampers
adoption. AI tools that do not consider the needs of clinical end users
and fail to seamlessly interoperate with electronic health records,
diagnostic equipment, and hospital databases will struggle to impact
patient care [128]. Privacy concerns and legal uncertainties sur-
rounding the access of patient data for model development require
attention. Another crucial challenge is to demonstrate the efficacy and
safety of regulators before allowing their clinical implementation. Most
AI models only demonstrate predictive power on retrospective datasets
[129]. Rigorous real-world validation through prospective studies and
randomized controlled trials is necessary to establish clinical utility
[130]. The lack of reproducibility and bias mitigation in current
biomedical AI models also leads to skepticism and slow approval.
Therefore, gaining support from healthcare professionals is vital.
Change management involves demonstrating how AI improves medical
decision-making and user experience without causing disruption
[131]. Healthcare providers already face burnout and may be skeptical
of “black box” recommendations. User-centered design and
trust-building are essential for successful adoption. Adequate training
of end users on the capabilities and limitations of AI is also crucial to
preventing the risk of its misuse and the tendency to excessively rely
on it [132]. Finally, the specialized skills required to develop, evaluate,
and continually update AI systems pose implementation challenges
[133]. Healthcare organizations must foster internal capabilities and
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establish cross-sector partnerships to sustain AI solutions. The lack of
shared standards and best practices further complicates technology
replication and scales the costs. Overcoming these challenges requires
concerted efforts across policies, regulations, organizational processes,
and team capabilities. However, thoughtfully implemented AI has the
potential to transform decision-making support in the context of
managing infectious diseases.

6. Conclusions

Innovative applications of AI in zoonotic diseases show tremendous
promise for disease prediction, early diagnosis, and drug development.
Harnessing the power of AI can improve our ability to prevent, diagnose,
and treat zoonotic diseases, ultimately safeguarding public health and
mitigating the global impact of these infectious threats.

Compliance with ethical standards

This research involved no experimental animal or human participant.

Funding

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.

Data availability

Data sharing is not applicable to this article because no datasets were
generated or analyzed during the current study.

Author contributions

Conceptualization, methodology, and writing—original draft prepa-
ration: W.G. and C.L.; writing—review and editing: W.G., C.L., M.G.,
Q.Z., X.Y., and L.Z.; supervision: L.Z.; funding acquisition: L.Z. All authors
have read and agreed to the published version of the manuscript.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We thank all individuals who provided guidance and assistance
during the course of the research.

References

[1] M.T. Rahman, M.A. Sobur, M.S. Islam, S. Ievy, M.J. Hossain, M.E. El Zowalaty,
A.T. Rahman, H.M. Ashour, Zoonotic diseases: etiology, impact, and control,
Microorganisms 8 (9) (2020) 1405.

[2] O.A. Ghareeb, Ebola - a fatal emerging zoonotic disease: a review, Ann. Romanian
Soc. Cell Biol. 25 (6) (2021) 8748–8754.

[3] X. Dong, L. Soong, Emerging and Re-emerging zoonoses are major and global
challenges for public health, Zoonoses 1 (1) (2021) 1–2.

[4] R. Henao, J.T. Lu, J.E. Lucas, J. Ferranti, L. Carin, Electronic Health Record
Analysis via Deep Poisson Factor Models, J. Mach. Learn. Res. 17 (2016)
6422–6453.

[5] C. Shen, Y.-T. Lin, H.-T. Wu, Robust and scalable manifold learning via landmark
diffusion for long-term medical signal processing, J. Mach. Learn. Res. 23 (1)
(2022). Article 86.

[6] S. Agrebi, A. Larbi, Use of artificial intelligence in infectious diseases, in: Artificial
Intelligence in Precision Health, Elsevier, 2020, pp. 415–438.

[7] Z.S.Y. Wong, J. Zhou, Q. Zhang, Artificial intelligence for infectious disease big
data analytics, Infect. Dis. Health 24 (1) (2019) 44–48.

[8] N. Pillai, M. Ramkumar, B. Nanduri, Artificial intelligence models for zoonotic
pathogens: a survey, Microorganisms 10 (10) (2022) 1911.
11
[9] T.T. Nguyen, N.D. Nguyen, S. Nahavandi, Deep reinforcement learning for
multiagent systems: a review of challenges, solutions, and applications, IEEE
Trans. Cybern. 50 (9) (2020) 3826–3839.

[10] L.R. Kolozsv�ari, T. B�erczes, A. Hajdu, R. Gesztelyi, A. Tiba, I. Varga, A.a.B. Al-
Tammemi, G.J. Sz}oll}osi, S. Hars�anyi, S. Garb�oczy, J. Zsuga, Predicting the
epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using
artificial intelligence: an application on the first and second waves, Inform. Med.
Unlocked 25 (2021) 100691.

[11] A. Mollalo, K.M. Rivera, B. Vahedi, Artificial neural network modeling of novel
coronavirus (COVID-19) incidence rates across the continental United States, Int.
J. Environ. Res. Public Health 17 (12) (2020) 4204.

[12] T. Kollars Jr., C. Senessie, G. Sunderland, Indentifying and modeling the
distribution of cryptic reservoirs of Ebola virus using artificial intelligence, Afr. J.
Clin. Exp. Microbiol. 19 (3) (2018) 229–237.

[13] O.A. Sarumi, In Machine learning-based big data analytics framework for ebola
outbreak surveillance, in: International Conference on Intelligent Systems Design
and Applications, Springer, 2020, pp. 580–589.

[14] F. Rahmat, Z. Zulkafli, A. Juraiza Ishak, S.B. Mohd Noor, H. Yahaya, A. Masrani,
Exploratory data analysis and artificial neural network for prediction of
leptospirosis occurrence in seremban, Malaysia Based Meteorol Data, Front. Earth
Sci. 8 (2020) 377.

[15] M.F. Rahmat, Z. Zulkafli, A.J. Ishak, R. Abdul Rahman, J. Ab Rahman, S. De
Stercke, M.R. Templeton, A. Mijic, W. Buytaert, In integration of spatiotemporal
data in the development of AI-fEaL: artificial intelligence for early warning of
leptospirosis in Negeri Sembilan, Malaysia, in: AGU Fall Meeting Abstracts 2020,
2020. GH022-05.

[16] Y.H. Bhosale, S.R. Zanwar, A.T. Jadhav, Z. Ahmed, V.S. Gaikwad, K.S. Gandle, In
human monkeypox 2022 virus: machine learning prediction model, outbreak
forecasting, visualization with time-series exploratory data analysis, in: 2022 13th
International Conference on Computing Communication and Networking
Technologies (ICCCNT), IEEE, 2022, pp. 1–6, 2022.

[17] S. Bylaiah, S. Shedole, K. Suresh, L. Gowda, B. Shivananda, C. Shivamallu, S. Patil,
Disease prediction model to assess the impact of changes in precipitation level on
the risk of anthrax infectiousness among the livestock hosts in Karnataka, India,
Int. J. Spec. Educ. 33 (2022) 711–727.

[18] K. Seetah, D. LaBeaud, J. Kumm, E. Grossi-Soyster, A. Anangwe, M. Barry,
Archaeology and contemporary emerging zoonosis: a framework for predicting
future Rift Valley fever virus outbreaks, Int. J. Osteoarchaeol 30 (3) (2020)
345–354.

[19] S. Choubey, S. Barde, A.J.M.S. Badholia, Enhancing the prediction efficiency of
virus borne diseases using enhanced backpropagation with an artificial neural
network, Measurement: Sensors 24 (2022) 100505.

[20] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-D€orner, M. Parker,
D. Bonsall, C. Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic
control with digital contact tracing, Science 368 (6491) (2020) eabb6936.

[21] M.A. Wahid, S.H.R. Bukhari, A. Daud, S.E. Awan, M.A. Z. Raja, COVICT: an IoT
based architecture for COVID-19 detection and contact tracing, J. Ambient Intell.
Human. Comput. 14 (6) (2023) 7381–7398.

[22] Y. Ko, Victoria M. Mendoza, R. Mendoza, Y. Seo, J. Lee, E. Jung, Estimation of
monkeypox spread in a nonendemic country considering contact tracing and self-
reporting: a stochastic modeling study, J. Med. Virol. 95 (1) (2023) e28232.

[23] A. Ali, S. Nisar, M.A. Khan, S.A. Mohsan, F. Noor, H. Mostafa, M. Marey, A privacy-
preserved internet-of-medical-things scheme for eradication and control of dengue
using UAV, Micromachines 13 (2022) 1702.

[24] S.€O. Arık, J. Shor, R. Sinha, J. Yoon, J.R. Ledsam, L.T. Le, M.W. Dusenberry,
N.C. Yoder, K. Popendorf, A. Epshteyn, A prospective evaluation of AI-augmented
epidemiology to forecast COVID-19 in the USA and Japan, NPJ Digit. Med. 4 (1)
(2021) 146.

[25] F.-S. Chang, Y.-T. Tseng, P.-S. Hsu, C.-D. Chen, I.-B. Lian, D.-Y. Chao, Re-Assess
vector indices threshold as an early warning tool for predicting dengue epidemic
in a dengue non-endemic country, PLoS Neglected Trop. Dis. 9 (9) (2015)
e0004043.

[26] V. La Gatta, V. Moscato, M. Postiglione, G. Sperli, An epidemiological neural
network exploiting dynamic graph structured data applied to the covid-19
outbreak, IEEE Transact. Big Data 7 (1) (2020) 45–55.

[27] K.L. Reagan, S. Deng, J. Sheng, J. Sebastian, Z. Wang, S.N. Huebner, L.A. Wenke,
S.R. Michalak, T. Strohmer, J.E. Sykes, Use of machine-learning algorithms to aid
in the early detection of leptospirosis in dogs, J. Vet. Diagn. Invest. 34 (4) (2022)
612–621.

[28] M. Kannan, C.J. Priya, An early detection of NIPAH infectious disease based on
integrated medical features for human using ensemble RBM techniques, J. Pharm.
Negat. Results (2022) 2344–2364.

[29] M.M. Alam, M.M. Alam, H. Mirza, N. Sultana, N. Sultana, A.A. Pasha, A.I. Khan,
A. Zafar, M.T. Ahmad, A novel COVID-19 diagnostic system using biosensor
incorporated artificial intelligence technique, Diagnostics 13 (11) (2023) 1886.

[30] J.J. Tom, N.P. Anebo, A Neuro-Fussy Based Model for Diagnosis of Monkeypox,
Diseases (2018). http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.
12398/733.

[31] A.I. Saleh, A.H. Rabie, Human monkeypox diagnose (HMD) strategy based on data
mining and artificial intelligence techniques, Comput. Biol. Med. 152 (2023)
106383.

[32] M. Dwivedi, R.G. Tiwari, N. Ujjwal, In Deep learning methods for early detection
of monkeypox skin lesion, in: 2022 8th International Conference on Signal
Processing and Communication (ICSC), IEEE, 2022, pp. 343–348, 2022.

[33] M.R. Hossen, N. Alfaz, A. Sami, S.A. Tanim, T.B. Sarwar, M.K. Islam, In an
EfficientNet to classify monkeypox-comparable skin lesions using transfer

http://refhub.elsevier.com/S2949-7043(23)00039-2/sref1
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref1
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref1
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref2
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref2
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref2
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref3
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref3
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref3
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref4
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref4
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref4
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref4
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref5
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref5
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref5
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref6
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref6
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref6
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref7
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref7
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref7
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref8
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref8
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref9
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref9
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref9
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref9
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref10
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref11
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref11
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref11
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref12
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref12
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref12
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref12
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref13
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref13
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref13
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref13
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref14
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref14
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref14
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref14
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref15
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref15
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref15
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref15
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref15
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref16
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref17
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref17
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref17
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref17
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref17
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref18
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref18
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref18
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref18
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref18
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref19
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref19
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref19
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref20
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref20
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref20
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref20
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref21
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref21
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref21
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref21
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref22
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref22
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref22
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref23
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref23
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref23
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref24
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref24
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref24
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref24
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref24
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref25
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref25
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref25
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref25
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref26
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref26
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref26
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref26
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref27
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref27
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref27
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref27
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref27
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref28
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref28
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref28
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref28
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref29
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref29
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref29
http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/733
http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/733
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref31
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref31
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref31
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref32
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref32
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref32
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref32
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref33
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref33


W. Guo et al. Science in One Health 2 (2023) 100045
learning, in: 2023 IEEE International Conference on Omni-Layer Intelligent
Systems (COINS), IEEE, 2023, pp. 1–6, 2023.

[34] S. Manigandan, P.K. Thaloor Ramesh, N.T.L. Chi, K.J.A.E. Brindhadevi,
A. Technology, Early detection of SARS-CoV-2 without human intervention to
combat COVID-19 using drone technology, Aircraft Eng. Aero. Technol. 93 (1)
(2021) 85–88.

[35] M.M. Mijwil, Implementation of machine learning techniques for the classification
of lung X-ray images used to detect COVID-19 in humans, Iraqi J. Sci. (2021)
2099–2109.

[36] A. Acharya, R. Agarwal, M.B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K.G. Byler,
S. Chen, L. Coates, C.J. Cooper, Supercomputer-based ensemble docking drug
discovery pipeline with application to COVID-19, J. Chem. Inf. Model. 60 (12)
(2020) 5832–5852.

[37] N. Karki, N. Verma, F. Trozzi, P. Tao, E. Kraka, B. Zoltowski, Predicting potential
SARS-COV-2 drugs—in depth drug database screening using deep neural network
framework SSnet, classical virtual screening and docking, Int. J. Mol. Sci. 22 (2021)
1573.

[38] M. Delijewski, J. Haneczok, AI drug discovery screening for COVID-19 reveals
zafirlukast as a repurposing candidate, Medicine in Drug Discovery 9 (2021)
100077.

[39] M.B. Ayoola, N. Pillai, B. Nanduri, M.J. Rothrock, M. Ramkumar, Preharvest
environmental and management drivers of multidrug resistance in major bacterial
zoonotic pathogens in Pastured Poultry Flocks, Microorganisms 10 (9) (2022)
1703.

[40] N. Bung, S.R. Krishnan, G. Bulusu, A. Roy, De novo design of new chemical entities
for SARS-CoV-2 using artificial intelligence, Future Med. Chem. 13 (6) (2021)
575–585.

[41] M. Kumari, N. Subbarao, A hybrid resampling algorithms SMOTE and ENN based
deep learning models for identification of Marburg virus inhibitors, Future Med.
Chem. 14 (10) (2022) 701–715.

[42] R. Sharma, S. Shrivastava, S.K. Singh, A. Kumar, A.K. Singh, S. Saxena,
H. Informatics, Deep-AVPpred: artificial intelligence driven discovery of peptide
drugs for viral infections, IEEE J. Biomed. Health Inform. 26 (10) (2021)
5067–5074.

[43] M.B. Jamshidi, J. Talla, A. Lalbakhsh, M.S. Sharifi-Atashgah, A. Sabet, Z. Peroutka,
In A conceptual deep learning framework for COVID-19 drug discovery, in: 2021
IEEE 12th annual ubiquitous computing, Electronics & Mobile Communication
Conference (UEMCON), 2021, pp. 30–34, 1-4 Dec. 2021, 2021.

[44] N. Hatibi, M. Dumont-Lagac�e, Z. Alouani, R. El Fatimy, M. Abik, T. Daouda,
Misclassified: identification of zoonotic transition biomarker candidates for
influenza A viruses using deep neural network, Front. Genet. 14 (2023) 1145166.

[45] S.K. Kwofie, J. Adams, E. Broni, K.S. Enninful, C. Agoni, M.E.S. Soliman,
M.D. Wilson, Artificial intelligence, machine learning, and big data for ebola virus
drug discovery, Pharmaceuticals 16 (2023) 332.

[46] M. Wardeh, K.J. Sharkey, M. Baylis, Integration of shared-pathogen networks and
machine learning reveals the key aspects of zoonoses and predicts mammalian
reservoirs, Proc. Biol. Sci. 287 (1920) (2020) 20192882.

[47] Z. Xu, W. Dong, S.N. Srihari, Using Social Dynamics to Make Individual Predictions:
Variational Inferencewith a Stochastic KineticModel, Adv. Neural Inf. Process. Syst.
29 (2016), https://doi.org/10.5555/3157382.3157409.

[48] M. Shafaati, M. Zandi, State-of-the-art on monkeypox virus: an emerging zoonotic
disease, Infection 50 (6) (2022) 1425–1430.

[49] R. Keshavamurthy, S. Dixon, K.T. Pazdernik, L.E. Charles, Predicting infectious
disease for biopreparedness and response: a systematic review of machine learning
and deep learning approaches, One Health (2022) 100439.

[50] I. Kaur, T. Behl, L. Aleya, H. Rahman, A. Kumar, S. Arora, I.J. Bulbul, Artificial
intelligence as a fundamental tool in management of infectious diseases and its
current implementation in COVID-19 pandemic, Environ. Sci. Pollut. Res. 28 (30)
(2021) 40515–40532.

[51] N.L. Bragazzi, H. Dai, G. Damiani, M. Behzadifar, M. Martini, J. Wu, How big data
and artificial intelligence can help better manage the COVID-19 pandemic, Int. J.
Environ. Res. Publ. Health 17 (9) (2020) 3176.

[52] L.R. Kolozsvari, T. B�erczes, A. Hajdu, R. Gesztelyi, A. Tiba, I. Varga, G.J. Sz}oll}osi,
S. Harsanyi, S. Garboczy, J.J.M. Zsuga, Predicting the Epidemic Curve of the
Coronavirus (SARS-CoV-2) Disease (COVID-19) Using Artificial Intelligence: An
application on the first and second waves, Inform. Med. Unlocked 25 (2021)
100691, https://doi.org/10.1016/j.imu.2021.100691.

[53] T. Kollars Jr., C. Senessie, G. Sunderland, Indentifying and modeling the
distribution of cryptic reservoirs of Ebola virus using artificial intelligence, Afr. J.
Clin. Exp. Microbiol. 19 (3) (2018) 229–237.

[54] U. Soni, N. Gupta, In an artificial intelligence approach for forecasting ebola
disease, J. Phys. Conf. Ser. (2021) 012038, 2021; IOP Publishing.

[55] A. Mohammadinia, B. Saeidian, B. Pradhan, Z.J. B.i. d. Ghaemi, Prediction
mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches,
BMC. Infect. Dis. 19 (1) (2019) 1–18.

[56] W.A. Bower, K.A. Hendricks, A.R. Vieira, R.M. Traxler, Z. Weiner, R. Lynfield,
A. Hoffmaster, What is anthrax? Pathogens 11 (6) (2022) 690.

[57] K.A. Connors, A.L. Hartman, Advances in understanding neuropathogenesis of rift
valley fever virus, Annu. Rev. Virol. 9 (2022) 437–450.

[58] M.T. Rahman, M.A. Sobur, M.S. Islam, S. Ievy, M.J. Hossain, M.E. El Zowalaty,
A.T. Rahman, H.M.J.M. Ashour, Zoonotic diseases: etiology, impact, and control,
Microorganisms 8 (9) (2020) 1405.

[59] A.D. Hossain, J. Jarolimova, A. Elnaiem, C.X. Huang, A. Richterman, L.C. Ivers,
Effectiveness of contact tracing in the control of infectious diseases: a systematic
review, Lancet Public Health 7 (3) (2022) e259–e273.
12
[60] M.E. Kretzschmar, G. Rozhnova, M.C.J. Bootsma, M. van Boven, J.H.H.M. van de
Wijgert, M.J.M. Bonten, Impact of delays on effectiveness of contact tracing
strategies for COVID-19: a modelling study, Lancet Public Health 5 (8) (2020)
e452–e459.

[61] M.E.G. Gendy, M.R. Yuce, Emerging technologies used in health management and
efficiency improvement during different contact tracing phases against COVID-19
pandemic, IEEE Rev. Biomed. Eng. 16 (2023) 38–52.

[62] A. Anglemyer, T.H.M. Moore, L. Parker, T. Chambers, A. Grady, K. Chiu, M. Parry,
M. Wilczynska, E. Flemyng, L. Bero, Digital contact tracing technologies in
epidemics: a rapid review, Cochrane Database Syst. Rev. 8 (2020) CD013699.

[63] F.B. Patel, N. Jain, R. Menon, S. Kodeboyina, In comparative study of privacy
preserving-contact tracing on digital platforms, in: 2020 International Conference
on Computational Intelligence (ICCI), 2020, pp. 137–141, 8-9 Oct. 2020, 2020.

[64] M. Vengateshwaran, A.S. Harshana, N. Valarmathi, S. Jayanthi, E. Srividhya, In
contact tracing detection application for covid-19 using machine learning
techniques, in: 2022 International Conference on Applied Artificial Intelligence
and Computing (ICAAIC), 2022, pp. 609–613, 9-11 May 2022, 2022.

[65] M. Shahroz, F. Ahmad, M.S. Younis, N. Ahmad, M.N. Kamel Boulos, R. Vinuesa,
J. Qadir, COVID-19 digital contact tracing applications and techniques: a review
post initial deployments, Trans. Eng. 5 (2021) 100072.

[66] Z. Huang, H. Guo, Y.-M. Lee, E.C. Ho, H. Ang, A. Chow, Performance of digital
contact tracing tools for COVID-19 response in Singapore: cross-sectional study,
JMIR Mhealth Uhealth 8 (10) (2020) e23148.

[67] S. Sharma, G. Singh, R. Sharma, P. Jones, S. Kraus, Y.K. Dwivedi, Digital health
innovation: exploring adoption of COVID-19 digital contact tracing apps, IEEE
Trans. Eng. Manag. (2020) 1–17.

[68] A. Trivedi, D. Vasisht, Digital contact tracing: technologies, shortcomings, and the
path forward, J. SIGCOMM Comput. Commun. Rev. 50 (4) (2020) 75–81.

[69] R. Bassily, S. Moran, A. Nandi, Learning from mixtures of private and public
populations, Adv. Neural Inf. Process. Syst. 33 (2020) 2947–2957.

[70] J.M. Brauner, S. Mindermann, M. Sharma, D. Johnston, J. Salvatier, T. Gaven�ciak,
A.B. Stephenson, G. Leech, G. Altman, V. Mikulik, Inferring the effectiveness of
government interventions against COVID-19, Science 371 (6531) (2021)
eabd9338.

[71] M. Chinazzi, J.T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. Pastore
y Piontti, K. Mu, L. Rossi, K. Sun, The effect of travel restrictions on the spread of
the 2019 novel coronavirus (COVID-19) outbreak, Science 368 (6489) (2020)
395–400.

[72] R.N. Thompson, Epidemiological models are important tools for guiding COVID-
19 interventions, BMC Med. 18 (1) (2020) 152.

[73] G. Larios, M. Ribeiro, C. Arruda, S.L. Oliveira, T. Canassa, M.J. Baker,
B. Marangoni, C. Ramos, C. Cena, A new strategy for canine visceral leishmaniasis
diagnosis based on FTIR spectroscopy and machine learning, J. Biophotonics 14
(11) (2021) e202100141.

[74] S. Kumari, S.K. Yadav, Development of iot based smart animal health monitoring
system using raspberry pi, Int. J. Adv. Stud. Sci. Res. 3 (8) (2018).

[75] J. Cowton, I. Kyriazakis, T. Pl€otz, J. Bacardit, A combined deep learning gru-
autoencoder for the early detection of respiratory disease in pigs using multiple
environmental sensors, Sensors 18 (8) (2018) 2521.

[76] D. Machuve, E. Nwankwo, N. Mduma, J. Mbelwa, Poultry diseases diagnostics
models using deep learning, Front. Artif. Intell. 5 (2022) 733345.

[77] U. Subramaniam, M.M. Subashini, D. Almakhles, A. Karthick, S. Manoharan, An
expert system for COVID-19 infection tracking in lungs using image processing
and deep learning techniques, BioMed Res. Int. 2021 (2021) 1–17.

[78] N. Patel, H. Jain, V.S. Lonkar, D. Singh, In biometric-based unique identification
for bovine animals—comparative study of various machine and deep learning
computer vision methods, in: 2023 Somaiya International Conference on
Technology and Information Management (SICTIM), IEEE, 2023, pp. 1–5, 2023.

[79] T. Nayak, K. Chadaga, N. Sampathila, H. Mayrose, G. Muralidhar Bairy, S. Prabhu,
S.S. Katta, S. Umakanth, Detection of Monkeypox from skin lesion images using
deep learning networks and explainable artificial intelligence, Appl. Math. Sci.
Eng. 31 (1) (2023) 2225698.

[80] A. Chaddad, L. Hassan, C. Desrosiers, Deep radiomic analysis for predicting
coronavirus disease 2019 in computerized tomography and X-ray images, IEEE
Transact. Neural Networks Learn. Syst. 33 (1) (2022) 3–11.

[81] H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao, R.M. Summers, Interleaved text/image
deep mining on a large-scale radiology database for automated image
interpretation, J. Mach. Learn. Res. 17 (1) (2016) 3729–3759.

[82] J. Peng, Z. Duan, Y. Guo, X. Li, X. Luo, X. Han, J. Luo, Identification of candidate
biomarkers of liver hydatid disease via microarray profiling, bioinformatics
analysis, and machine learning, J. Int. Med. Res. 49 (3) (2021)
0300060521993980.

[83] M. Kannan, C. Priya, A Research on Prediction of Bat-Borne Disease Infection
through Segmentation Using Diffusion-Weighted MR Imaging in Deep-Machine
Learning Approach, Mater. Today: Proc. 81 (2021) 994–999, https://doi.org/
10.1016/j.matpr.2021.04.3492021.

[84] Z. Akkus, Y.H. Aly, I.Z. Attia, F. Lopez-Jimenez, A.M. Arruda-Olson, P.A. Pellikka,
S.V. Pislaru, G.C. Kane, P.A. Friedman, J.K. Oh, Artificial intelligence (AI)-
empowered echocardiography interpretation: a state-of-the-art review, J. Clin.
Med. 10 (7) (2021) 1391.

[85] X. Liu, Y. Zhou, Y. Liu, In poultry disease identification based on light weight deep
neural networks, in: 2023 IEEE 3rd International Conference on Computer
Communication and Artificial Intelligence (CCAI), IEEE, 2023, pp. 92–96, 2023.

[86] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects, IEEE Transact. Neural Networks

http://refhub.elsevier.com/S2949-7043(23)00039-2/sref33
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref33
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref33
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref34
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref34
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref34
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref34
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref34
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref35
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref35
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref35
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref35
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref36
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref36
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref36
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref36
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref36
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref37
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref37
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref37
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref37
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref37
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref38
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref38
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref38
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref39
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref39
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref39
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref39
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref40
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref40
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref40
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref40
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref41
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref41
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref41
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref41
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref42
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref42
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref42
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref42
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref42
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref43
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref44
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref44
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref44
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref44
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref45
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref45
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref45
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref46
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref46
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref46
https://doi.org/10.5555/3157382.3157409
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref48
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref48
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref48
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref49
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref49
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref49
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref50
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref50
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref50
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref50
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref50
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref51
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref51
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref51
https://doi.org/10.1016/j.imu.2021.100691
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref53
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref53
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref53
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref53
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref54
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref54
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref55
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref55
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref55
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref55
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref56
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref56
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref57
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref57
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref57
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref58
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref58
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref58
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref59
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref59
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref59
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref59
http://refhub.elsevier.com/S2949-7043(23)00039-2/optmBxWxeHMxH
http://refhub.elsevier.com/S2949-7043(23)00039-2/optmBxWxeHMxH
http://refhub.elsevier.com/S2949-7043(23)00039-2/optmBxWxeHMxH
http://refhub.elsevier.com/S2949-7043(23)00039-2/optmBxWxeHMxH
http://refhub.elsevier.com/S2949-7043(23)00039-2/optmBxWxeHMxH
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref60
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref60
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref60
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref60
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref61
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref61
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref61
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref62
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref62
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref62
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref62
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref63
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref63
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref63
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref63
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref63
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref64
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref64
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref64
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref65
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref65
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref65
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref66
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref66
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref66
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref66
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref67
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref67
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref67
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref68
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref68
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref68
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref69
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref69
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref69
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref69
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref69
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref70
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref70
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref70
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref70
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref70
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref71
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref71
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref72
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref72
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref72
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref72
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref73
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref73
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref74
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref74
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref74
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref74
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref75
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref75
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref76
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref76
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref76
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref76
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref77
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref78
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref78
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref78
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref78
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref79
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref79
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref79
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref79
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref80
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref80
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref80
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref80
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref81
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref81
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref81
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref81
https://doi.org/10.1016/j.matpr.2021.04.3492021
https://doi.org/10.1016/j.matpr.2021.04.3492021
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref83
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref83
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref83
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref83
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref84
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref84
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref84
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref84


W. Guo et al. Science in One Health 2 (2023) 100045
Learn. Syst. 33 (12) (2022) 6999–7019, https://doi.org/10.1109/
TNNLS.2021.308482.

[87] C.S. Bojer, J.P. Meldgaard, Kaggle forecasting competitions: an overlooked
learning opportunity, Int. J. Forecast. 37 (2) (2021) 587–603.

[88] L. Patel, T. Shukla, X. Huang, D.W. Ussery, S. Wang, Machine learning methods in
drug discovery, Molecules 25 (22) (2020) 5277.

[89] J. Pe~na-Guerrero, P.A. Nguewa, A.T. García-Sosa, Machine learning, artificial
intelligence, and data science breaking into drug design and neglected diseases,
WIREs Comput. Mol. Sci. 11 (5) (2021) e1513.

[90] M. Liu, Y. Xu, Gene identification and potential drug therapy for drug-resistant
melanoma with bioinformatics and deep learning technology, Disease Markers
(2022) 2461055, https://doi.org/10.1155/2022/2461055.

[91] M. Bagherian, E. Sabeti, K. Wang, M.A. Sartor, Z. Nikolovska-Coleska, K. Najarian,
Machine learning approaches and databases for prediction of drug–target
interaction: a survey paper, Briefings Bioinf. 22 (1) (2021) 247–269.

[92] K.A. Carpenter, X. Huang, Machine learning-based virtual screening and its
applications to Alzheimer's drug discovery: a review, Curr. Pharmaceut. Des. 24
(28) (2018) 3347–3358.

[93] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng,
Structure-based drug design, virtual screening and high-throughput screening
rapidly identify antiviral leads targeting COVID-19, bioRxiv (2020), https://
doi.org/10.1101/2020.02.26.964882.

[94] Y. Ren, T. Chakraborty, S. Doijad, L. Falgenhauer, J. Falgenhauer, A. Goesmann,
A.-C. Hauschild, O. Schwengers, D. Heider, Prediction of antimicrobial resistance
based on whole-genome sequencing and machine learning, Bioinformatics 38 (2)
(2022) 325–334.

[95] R. Gupta, D. Srivastava, M. Sahu, S. Tiwari, R.K. Ambasta, P. Kumar, Artificial
intelligence to deep learning: machine intelligence approach for drug discovery,
Mol. Divers. 25 (2021) 1315–1360.

[96] F. Gentile, V. Agrawal, M. Hsing, A.-T. Ton, F. Ban, U. Norinder, M.E. Gleave,
A. Cherkasov, Deep docking: a deep learning platform for augmentation of
structure based drug discovery, ACS Cent. Sci. 6 (6) (2020) 939–949.

[97] O. Kadioglu, M. Saeed, H.J. Greten, T. Efferth, Identification of novel compounds
against three targets of SARS CoV-2 coronavirus by combined virtual screening
and supervised machine learning, Comput. Biol. Med. 133 (2021) 104359.

[98] Q. Bai, S. Liu, Y. Tian, T. Xu, A.J. Banegas-Luna, H. P�erez-S�anchez, J. Huang,
H. Liu, X. Yao, Application advances of deep learning methods for de novo drug
design and molecular dynamics simulation, Wiley Interdiscip. Rev. Comput. Mol.
Sci. 12 (3) (2022) e1581.

[99] S.R. Krishnan, N. Bung, G. Bulusu, A. Roy, Modeling, Accelerating de novo drug
design against novel proteins using deep learning, J. Chem. Inf. Model. 61 (2)
(2021) 621–630.

[100] A.H. Arshia, S. Shadravan, A. Solhjoo, A. Sakhteman, A. Sami, De novo design of
novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep
learning, docking, and molecular dynamic simulations, Comput. Biol. Med. 139
(2021) 104967.

[101] P. Das, T. Sercu, K. Wadhawan, I. Padhi, S. Gehrmann, F. Cipcigan,
V. Chenthamarakshan, H. Strobelt, C. Dos Santos, P.-Y. Chen, Accelerated
antimicrobial discovery via deep generative models and molecular dynamics
simulations, Nat. Biomed. Eng. 5 (6) (2021) 613–623.

[102] V.B. Mathema, P. Sen, S. Lamichhane, M. Ore�si�c, S. Khoomrung, Deep learning
facilitates multi-data type analysis and predictive biomarker discovery in cancer
precision medicine, Comput. Struct. Biotechnol. J. 21 (2023) 1372–1382, https://
doi.org/10.1016/j.csbj.2023.01.043.

[103] R. Thirunavukarasu, G.P. Doss, R. Gnanasambandan, M. Gopikrishnan,
V. Palanisamy, Towards computational solutions for precision medicine based big
data healthcare system using deep learning models: A review, Comput. Biol. Med.
149 (2022) 106020.

[104] S. Huang, J. Yang, S. Fong, Q.J. C.l. Zhao, Artificial intelligence in cancer diagnosis
and prognosis: opportunities and challenges, Cancer Lett. 471 (2020) 61–71.

[105] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, K. He, Y. Shi, D. Shen, Review of
artificial intelligence techniques in imaging data acquisition, segmentation, and
diagnosis for COVID-19, IEEE Rev. Biomed. Eng. 14 (2020) 4–15.

[106] A. Saxena, V. Pal, N.K. Tripathi, A.K. J.A.t. Goel, A real-time loopmediated isothermal
amplification assay for molecular detection of Burkholderia mallei, the aetiological
agent of a zoonotic and re-emerging disease glanders, Acta Tropica. 194 (2019)
189–194.

[107] M. Shoaib, A. Haider, M.A.Z. Raja, K.S. Nisar, Artificial intelligence knacks-based
computing for stochastic COVID-19 SIRC epidemic model with time delay, Int. J.
Modern Phys. B 36 (26) (2022) 2250174.

[108] J. Shen, C.J. Zhang, B. Jiang, J. Chen, J. Song, Z. Liu, Z. He, S.Y. Wong, P.-H. Fang,
W.-K. Ming, Artificial intelligence versus clinicians in disease diagnosis: systematic
review, JMIR Med. Info. 7 (3) (2019) e10010.

[109] D.S. Char, N.H. Shah, D. Magnus, Implementing machine learning in health
care—addressing ethical challenges, N. Engl. J. Med. 378 (11) (2018) 981.

[110] A.L. Beam, I.S. Kohane, Big data and machine learning in health care, JAMA 319
(13) (2018) 1317–1318.
13
[111] X. Liu, L. Faes, A.U. Kale, S.K. Wagner, D.J. Fu, A. Bruynseels, T. Mahendiran,
G. Moraes, M. Shamdas, C. Kern, A comparison of deep learning performance
against health-care professionals in detecting diseases from medical imaging: a
systematic review and meta-analysis, Lancet Digital Health 1 (6) (2019)
e271–e297.

[112] J. Morley, L. Floridi, L. Kinsey, A. Elhalal, From what to how: an initial review of
publicly available AI ethics tools, methods and research to translate principles into
practices, Sci. Eng. Ethics 26 (4) (2020) 2141–2168.

[113] E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI): toward
medical XAI, IEEE Transact. Neural Networks Learn. Syst. 32 (11) (2021)
4793–4813.

[114] S. Huang, K. Chaudhary, L.X. Garmire, More Is Better: Recent Progress in Multi-
Omics Data Integration Methods, Front. Genet. 8 (2017) 84.

[115] A. Dhillon, A. Singh, V.K. Bhalla, A Systematic Review on biomarker identification
for cancer diagnosis and prognosis in multi-omics: from computational needs to
machine learning and deep learning, Arch. Comput. Methods Eng. 30 (2) (2023)
917–949.

[116] L. Xiong, P. Hu, H. Wang, Establishment of epidemic early warning index system
and optimization of infectious disease model: analysis on monitoring data of
public health emergencies, Int. J. Disaster Risk Reduc. 65 (2021) 102547.

[117] N. Pillai, M.B. Ayoola, B. Nanduri, M.J. Rothrock Jr., M. Ramkumar, An ensemble
learning approach to identify pastured poultry farm practice variables and soil
constituents that promote Salmonella prevalence, Heliyon 8 (11) (2022) e11331.

[118] A. Bessani, J. Brandt, M. Bux, V. Cogo, L. Dimitrova, J. Dowling, A. Gholami,
K. Hakimzadeh, M. Hummel, M. Ismail, In BiobankCloud: a platform for the secure
storage, sharing, and processing of large biomedical data sets, Biomedical Data
Management and Graph Online Querying: VLDB 2015 Workshops, in: Big-O (Q)
and DMAH, Waikoloa, HI, USA, August 31–September 4, 2015, Revised Selected
Papers 1, 2016, Springer, 2016, pp. 89–105.

[119] H.-U. Prokosch, T. Bahls, M. Bialke, J. Eils, C. Fegeler, J. Gruendner,
B. Haarbrandt, C. Hampf, W. Hoffmann, H. Hund, The COVID-19 data exchange
platform of the German university medicine, in: Challenges of Trustable AI and
Added-Value on Health, IOS Press, 2022, pp. 674–678.

[120] B. Mesk�o, E. Topol, The imperative for regulatory oversight of large language
models (or generative AI) in healthcare, NPJ Digit. Med. 6 (1) (2023) 120.

[121] S. Gerke, T. Minssen, G. Cohen, Ethical and legal challenges of artificial
intelligence-driven healthcare, in: Artificial Intelligence in Healthcare, Elsevier,
2020, pp. 295–336.

[122] S. Tonekaboni, S. Joshi, M.D. McCradden, A. Goldenberg, What clinicians want:
contextualizing explainable machine learning for clinical end use, in: D.-V. Finale,
F. Jim, J. Ken, K. David, R. Rajesh, W. Byron, W. Jenna (Eds.), In Proceedings of
the 4th Machine Learning for Healthcare Conference, 106, PMLR: Proceedings of
Machine Learning Research, 2019, pp. 359–380.

[123] C. Rudin, Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead, Nat. Mach. Intell. 1 (2019)
206–215.

[124] C.M. Parra, M. Gupta, D. Dennehy, Likelihood of questioning AI-based
recommendations due to perceived racial/gender bias, IEEE Trans. Technol. Soc. 3
(1) (2022) 41–45.

[125] J.B. Sexton, K.C. Adair, M.W. Leonard, T.C. Frankel, J. Proulx, S.R. Watson,
B. Magnus, B. Bogan, M. Jamal, R. Schwendimann, A.S. Frankel, Providing
feedback following Leadership WalkRounds is associated with better patient safety
culture, higher employee engagement and lower burnout, BMJ Qual. Saf. 27 (4)
(2018) 261–270.

[126] D. Xu, S. Yuan, L. Zhang, X. Wu, In Fairgan: fairness-aware generative adversarial
networks, in: 2018 IEEE International Conference on Big Data (Big Data), IEEE,
2018, pp. 570–575, 2018.

[127] N. Pandit, A.T. Vanak, Artificial intelligence and one health: knowledge bases for
causal modeling, J. Indian Inst. Sci. 100 (4) (2020) 717–723.

[128] J. He, S.L. Baxter, J. Xu, J. Xu, X. Zhou, K.J. N.m. Zhang, The practical
implementation of artificial intelligence technologies in medicine, Nat. Med. 25
(1) (2019) 30–36.

[129] X. Liu, S.C. Rivera, D. Moher, M.J. Calvert, A.K. Denniston, Reporting guidelines
for clinical trial reports for interventions involving artificial intelligence: the
CONSORT-AI Extension, Br. Med. J. 370 (2020) m3164.

[130] S.G. Finlayson, A. Subbaswamy, K. Singh, J. Bowers, A. Kupke, J. Zittrain,
I.S. Kohane, S. Saria, The clinician and dataset shift in artificial intelligence, N.
Engl. J. Med. 385 (3) (2021) 283–286.

[131] J.W. Gichoya, K. Thomas, L.A. Celi, N. Safdar, I. Banerjee, J.D. Banja, L. Seyyed-
Kalantari, H. Trivedi, S. Purkayastha, AI Pitfalls and what Not to Do: Mitigating
Bias in AI, Br. J. Radiol. 96 (2023) 20230023.

[132] M. El-Assady, C. Moruzzi, Which biases and reasoning pitfalls do explanations
trigger? Decomposing communication processes in human–AI interaction, IEEE
Comput. Graph. Appl. 42 (6) (2022) 11–23.

[133] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen,
Y. Wang, Artificial intelligence in healthcare: past, present and future, Stroke and
Vascular, Neurology 2 (4) (2017).

https://doi.org/10.1109/TNNLS.2021.308482
https://doi.org/10.1109/TNNLS.2021.308482
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref86
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref86
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref86
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref87
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref87
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref88
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref88
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref88
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref88
https://doi.org/10.1155/2022/2461055
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref90
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref90
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref90
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref90
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref90
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref91
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref91
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref91
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref91
https://doi.org/10.1101/2020.02.26.964882
https://doi.org/10.1101/2020.02.26.964882
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref93
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref93
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref93
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref93
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref93
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref94
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref94
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref94
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref94
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref95
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref95
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref95
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref95
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref96
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref96
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref96
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref97
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref98
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref98
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref98
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref98
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref99
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref99
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref99
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref99
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref100
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref100
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref100
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref100
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref100
https://doi.org/10.1016/j.csbj.2023.01.043
https://doi.org/10.1016/j.csbj.2023.01.043
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref102
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref102
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref102
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref102
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref103
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref103
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref103
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref104
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref104
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref104
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref104
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref105
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref105
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref105
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref105
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref105
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref106
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref106
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref106
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref107
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref107
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref107
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref108
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref108
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref108
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref109
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref109
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref109
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref110
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref111
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref111
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref111
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref111
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref112
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref112
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref112
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref112
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref113
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref113
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref114
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref114
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref114
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref114
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref114
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref115
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref115
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref115
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref116
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref116
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref116
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref117
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref118
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref118
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref118
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref118
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref118
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref119
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref119
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref119
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref120
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref120
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref120
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref120
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref121
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref122
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref122
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref122
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref122
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref123
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref123
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref123
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref123
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref124
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref125
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref125
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref125
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref125
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref126
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref126
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref126
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref127
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref127
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref127
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref127
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref128
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref128
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref128
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref129
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref129
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref129
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref129
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref130
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref130
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref130
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref131
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref131
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref131
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref131
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref131
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref132
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref132
http://refhub.elsevier.com/S2949-7043(23)00039-2/sref132

	Innovative applications of artificial intelligence in zoonotic disease management
	1. Introduction
	2. Application of AI in epidemiological surveillance
	2.1. AI advancements in predicting zoonotic diseases
	2.1.1. COVID-19
	2.1.2. EVD
	2.1.3. Leptospirosis
	2.1.4. Other zoonotic diseases

	2.2. AI for contact tracing
	2.3. AI advancements in epidemiological modeling

	3. Enhancing early diagnosis of zoonotic diseases through AI advancements
	3.1. Analysis of physiological data
	3.2. Application of AI in image recognition

	4. Discovery and development of drugs for zoonotic diseases
	4.1. Machine learning
	4.2. Deep learning

	5. Discussion and perspective
	6. Conclusions
	Compliance with ethical standards
	Funding
	Data availability
	Author contributions
	Declaration of competing interest
	Acknowledgements
	References


